Свежая информация мисс имплантаты официальный сайт тут.

Выделение низкочастотной составляющей



Рисунок 2.6. Выделение низкочастотной составляющей из зависимости изменения яркости пикселов от координаты X


При использовании подобного частотного разложения теоретически можно вначале выделить из сигнала бесконечное число составляющих (гармоник), а потом просуммировать их и получить исходный сигнал. Однако реализовать это на практике сложно. Дело в том, что работать с бесконечными рядами невозможно, а обработка ряда с большим количеством элементов займет много машинных ресурсов. Поэтому приходится обходиться некоторым числом составляющих, которое зависит от требуемой точности воспроизведешь сигнала.

Примечание 8
Примечание 8

В радиоэлектронике разложение сигнала на частотные составляющие и последующий синтез сигнала по ним часто используются при моделировании радиосистем. Это позволяет получить представление о работе устройства при помощи математического моделирования. Расчеты, требуемые для моделирования даже простой системы, довольно сложны и трудоемки, поэтому обычно они выполняются на компьютере.

Ограничиться некоторым числом составляющих можно благодаря тому, что с ростом частоты амплитуда гармоник существенно убывает. Если требования к точности невысоки, то часто можно рассмотреть только 5-10 самых низкочастотных составляющих, а остальными пренебречь. Разумеется, часть информации при этом будет потеряна, но сигнал будет воспроизведен с приемлемой точностью.

Обратите внимание: уменьшая число рассматриваемых составляющих сигнала, мы тем самым уменьшаем объем информации, описывающей этот сигнал, то есть производим сжатие данных.

Примечание 9
Примечание 9

Даже если отбрасывать составляющие сигнала, потери все равно возникнут. Дело в том, что компьютер производит все операции с определенной точностью. Из-за округления изображение исказится даже при отсутствии сжатия.

В этом утверждении заложена сущность всех алгоритмов сжатия изображения с потерями. Частью информации можно пренебречь ради того, чтобы воспроизвести изображение с приемлемой точностью и при этом достичь уменьшения объема описывающих его данных. Конечно, при этом теряются некоторые детали изображения, его качество снижается, но, разумно выбирая алгоритм и степень сжатия, можно добиться того, что файл с картинкой значительно уменьшится в объеме, а сама картинка останется пригодной к использованию.

Для лучшего понимания основ работы алгоритма JPEG следует рассмотреть особенности восприятия человеком окружающей его реальности. Человеческий глаз более чувствителен к яркости, чем к цветовым составляющим изображения. Если вы переведете картинку в монохромный режим (яркий пример — черно-белый телевизор), то изображенные предметы останутся узнаваемыми — вы сможете сказать, что изображено, и даже определить некоторые свойства объекта, например, материал, из которого он состоит. Изображение же, содержащее цвета, но лишенное яркостной составляющей, практически перестает быть узнаваемым.

Вы можете легко убедиться в этом при помощи PhotoShop. Просто закрасьте какую-либо картинку любым цветом (но не черным и не белым) при помощи инструмента Paintbrush (Кисть) в режиме Luminosity (Яркость). При этом все пикселы приобретут яркость цвета кисти.

Итак, перед нами два основных компонента алгоритма сжатия изображений JPEG. С одной стороны, разложив некоторый сигнал (в данном случае это — информация об изображении) на частотные составляющие и отбросив самые незначительные из них, мы можем достичь сжатия данных. С другой стороны, человеческий Глаз устроен так, что он воспринимает в первую очередь яркость изображения и уже потом — его цветовые характеристики. Это предоставляет два способа уменьшения объема файла изображения, которые и используются в алгоритме JPEG.

  • объем хранимых и передаваемых данных может быть уменьшен путем разложения информации о цвете на частотные составляющие с последующим отбрасыванием самых незначительных из них — «лишних»;
  • так как глаз человека более чувствителен к яркости изображения (в данном случае оно состоит из пикселов), чем к его цвету, то следует стремиться передать без искажений информацию о яркости пикселов, а информацией об их цвете можно до определенной степени пренебречь.

Использование этих методов позволяет достичь высокой степени сжатия и значительно уменьшить объем файлов, содержащих изображение. Грамотное использование алгоритма позволяет получить настолько высокое качество воспроизведения картинки, что различить сжатое изображение и оригинал практически невозможно.

При сохранении изображения в формате JPEG над ним производятся перечисленные ниже операции:

  1. Изображение преобразуется из исходной цветовой модели (например, RGB, в которой каждая точка описывается тремя цветовыми составляющими) к модели, содержащей яркостный компонент и два компонента, определяющие цвет точки. Это необходимо для раздельной обработки яркостной и цветовой составляющих изображения. Если изображение уже находится в подходящем цветовом режиме, преобразования не требуется. В дальнейшем все компоненты обрабатываются независимо друг от друга.
  2. Цветовые компоненты усредняются между соседними пикселами, что позволяет снизить объем данных, требуемых для их передачи. Обычно усреднение производится так, что «поле» цветовых компонентов уменьшается в два раза по вертикали и по горизонтали. Например, для изображения 400x400 пикселов будут получены «поля» цветовых компонентов размером 200x200. Возможны и другие сочетания коэффициентов пропорциональности сторон, например 2:1, но они дают меньшую степень сжатия. Яркостный компонент на этом этапе не изменяется. Благодаря этому яркость изображения подвергается меньшим искажениям.
  3. Применение дискретного преобразования Фурье. Изображение (точнее, каждый из его компонентов) разбивается на блоки 8x8 пикселов, к которым применяется дискретное преобразование Фурье. При этом информация о значении того или иного компонента представляется в виде соответствующих колебаний. По аналогии с радиотехническими сигналами можно выделить в преобразованных компонентах некоторое среднее значение (некоторый аналог постоянного тока), а также переменную составляющую (аналог переменного тока). Высокочастотные (быстрые) изменения параметров менее заметны, чем изменения низкочастотные (плавные). Поэтому верхние частоты могут быть отброшены.
  4. Квантование значений параметров. Для отбрасывания ненужных компонентов значения, полученные в ходе преобразования Фурье, делятся на весовые коэффициенты и округляются. Для каждой точки внутри блока преобразования (8x8 пикселов) используется свой коэффициент, который выбирается из специальной таблицы. Для яркости и цветовых составляющих требуются отдельные таблицы. Составлять такие таблицы достаточно сложно, поэтому большинство кодировщиков JPEG используют стандартную таблицу ISO.

    Именно на этом этапе производится регулировка качества изображения. Из-меняя весовые коэффициенты, можно определить, какая часть информации будет отброшена. При этом качество изображения и размер файла изменяются обратно пропорционально друг другу.
  5. Сжатие полученных значений без потерь. Для устранения повторов в полученных значениях параметров изображения данные дополнительно сжимаются по методу Хаффмана. Этот метод основывается на замене всех кодов, встречающихся в исходных данных, на новые, причем наиболее часто встречающиеся комбинации получают самые короткие «обозначения». Этот метод позволяет достичь высокой степени сжатия без потери информации.

Для раскодирования данных необходимо выполнить эти операции в обратном порядке.

  1. Данные разархивируются в соответствии с методом Хаффмана. В результате получаются отсчеты параметров изображения.
  2. Из файла считывается таблица весовых коэффициентов. С ее помощью восстанавливаются результаты преобразования Фурье, выполненного при сжатии. В зависимости от степени сжатия, заданной кодировщиком, эти данные в той или иной степени соответствуют исходным.
  3. Над отсчетами частотных составляющих производится обратное преобразование Фурье. Это позволяет восстановить значения компонентов изображения.
  4. Полученные значения цветовых компонентов «распределяются» между соседними пикселами. Это необходимо из-за того, что при сжатии «поле» цветовых компонентов было уменьшено. Яркостный компонент сразу готов для последующей обработки.
  5. Для удобства вывода на экран или выполнения обработки изображение преобразуется в одну из цветовых моделей (например, в RGB для вывода на экран, или в CMYK для печати).

После того, как мы рассмотрели принцип работы алгоритма JPEG, можно подробнее остановиться на сферах его применения.

Основная проблема, ограничивающая применение этого формата — уменьше-ние качества изображения при увеличении степени сжатия. Причем для каждого изображения приемлемая степень сжатия будет разной. Определить ее проще всего подбором.

Досмотрим, как сказывается сжатие на качестве изображения. Для этого сохраним фотографию в формате JPEG. На рисунке 2.7 приведено исходное изображение. Размер исходного TIFF-файла — 760 Кбайт.



- Начало - - Назад - - Вперед -